On Classifications of Random Polynomials

نویسنده

چکیده مقاله:

 Let $ a_0 (omega), a_1 (omega), a_2 (omega), dots, a_n (omega)$ be a sequence of independent random variables defined on a fixed probability space $(Omega, Pr, A)$. There are many known results for the expected number of real zeros of a polynomial $ a_0 (omega) psi_0(x)+ a_1 (omega)psi_1 (x)+, a_2 (omega)psi_2 (x)+ dots + a_n (omega)psi_n (x)$ where  $ psi_j(x)$ , j=0.1.2...,n is a specific function of x. In this paper we highlight different characteristics arising for the random polynomial dictated by assuming different values for   $ psi_j(x)$. Then we are able to classify random polynomials into three classes each of which share common properties. Although, we are mainly concerned with the number of real roots we also study the density of complex roots generated by assuming complex random coefficients for polynomials.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hosoya polynomials of random benzenoid chains

Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...

متن کامل

On Roots of Random Polynomials

We study the distribution of the complex roots of random polynomials of degree n with i.i.d. coefficients. Using techniques related to Rice’s treatment of the real roots question, we derive, under appropriate moment and regularity conditions, an exact formula for the average density of this distribution, which yields appropriate limit average densities. Further, using a different technique, we ...

متن کامل

Zeros of Random Polynomials On

For a regular compact set K in C and a measure μ on K satisfying the Bernstein-Markov inequality, we consider the ensemble PN of polynomials of degree N , endowed with the Gaussian probability measure induced by L(μ). We show that for large N , the simultaneous zeros of m polynomials in PN tend to concentrate around the Silov boundary of K; more precisely, their expected distribution is asympto...

متن کامل

hosoya polynomials of random benzenoid chains

let $g$ be a molecular graph with vertex set $v(g)$, $d_g(u, v)$ the topological distance between vertices $u$ and $v$ in $g$. the hosoya polynomial $h(g, x)$ of $g$ is a polynomial $sumlimits_{{u, v}subseteq v(g)}x^{d_g(u, v)}$ in variable $x$. in this paper, we obtain an explicit analytical expression for the expected value of the hosoya polynomial of a random benzenoid chain with $n$ hexagon...

متن کامل

On Permanental Polynomials of Certain Random Matrices

The paper addresses the calculation of correlation functions of permanental polynomials of matrices with random entries. By exploiting a convenient contour integral representation of the matrix permanent some explicit results are provided for several random matrix ensembles. When compared with the corresponding formulae for characteristic polynomials, our results show both striking similarities...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 1  شماره 1

صفحات  1- 12

تاریخ انتشار 2004-09

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023